National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
UTILIZATION OF FOOD PROCESSING WASTE FOR LACTIC ACID AND ETHANOL PRODUCTION
Hudečková, Helena ; Kráčmar, Stanislav (referee) ; Buňka, František (referee) ; Márová, Ivana (advisor)
The doctoral thesis is focused on the microbial production of lactic acid and ethanol using food processing waste as substrate. Coffee processing waste (spent coffee grounds), wine production waste (grape pomace) and orange processing waste (orange peel) were chosen as substrates for experiments. The theoretical part is dedicated to summarizing current knowledge about waste from food production and possibilities of its processing. It also deals with selected metabolites (lactic acid, ethanol) to which these wastes can be used. Part of the experiments was focused on the characterization and optimization of hydrolysis to maximize the amount of fermentable saccharides. Different combinations of chemical, physical and enzymatic hydrolysis of selected substrates have been tested. Subsequently, a suitable strain for lactic acid and ethanol production was searched for. In the case of lactic acid production, 7 bacterial strains were selected (Lactobacillus casei CCM 4798, Bacillus coagulans CCM 2013, Bacillus coagulans CCM 2658, Lactobacillus rhamnosus CCM 1825T, Lactobacillus delbruckii subsp. bulgaricus CCM 7190, Lactobacillus plantarum CCM 7039T, Streptococcus thermophilus CCM 4757). These strains were first cultivated on the synthetic media containing different kind of saccharides. Afterward, the cultivation on the waste biomass hydrolysates were tested. In the case of ethanol production, 2 yeast strains kmeny (S. cerevisiae CNCTC 6646 a S. cerevisiae CNCTC 6651) were cultivated on hydrolysates of individual waste substrates. Subsequently, the experiments focused on the production of lactic acid and ethanol on hydrolysates of waste biomass in bioreactor were done. The last part of this doctoral thesis deals with the microaerobic pretreatment of lignocellulosic biomass to increase the production of organic acids during the acetogenic phase of anaerobic digestion.
UTILIZATION OF FOOD PROCESSING WASTE FOR LACTIC ACID AND ETHANOL PRODUCTION
Hudečková, Helena ; Kráčmar, Stanislav (referee) ; Buňka, František (referee) ; Márová, Ivana (advisor)
The doctoral thesis is focused on the microbial production of lactic acid and ethanol using food processing waste as substrate. Coffee processing waste (spent coffee grounds), wine production waste (grape pomace) and orange processing waste (orange peel) were chosen as substrates for experiments. The theoretical part is dedicated to summarizing current knowledge about waste from food production and possibilities of its processing. It also deals with selected metabolites (lactic acid, ethanol) to which these wastes can be used. Part of the experiments was focused on the characterization and optimization of hydrolysis to maximize the amount of fermentable saccharides. Different combinations of chemical, physical and enzymatic hydrolysis of selected substrates have been tested. Subsequently, a suitable strain for lactic acid and ethanol production was searched for. In the case of lactic acid production, 7 bacterial strains were selected (Lactobacillus casei CCM 4798, Bacillus coagulans CCM 2013, Bacillus coagulans CCM 2658, Lactobacillus rhamnosus CCM 1825T, Lactobacillus delbruckii subsp. bulgaricus CCM 7190, Lactobacillus plantarum CCM 7039T, Streptococcus thermophilus CCM 4757). These strains were first cultivated on the synthetic media containing different kind of saccharides. Afterward, the cultivation on the waste biomass hydrolysates were tested. In the case of ethanol production, 2 yeast strains kmeny (S. cerevisiae CNCTC 6646 a S. cerevisiae CNCTC 6651) were cultivated on hydrolysates of individual waste substrates. Subsequently, the experiments focused on the production of lactic acid and ethanol on hydrolysates of waste biomass in bioreactor were done. The last part of this doctoral thesis deals with the microaerobic pretreatment of lignocellulosic biomass to increase the production of organic acids during the acetogenic phase of anaerobic digestion.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.